An Efficient Learning of Constraints For Semi-Supervised Clustering using Neighbour Clustering Algorithm

نویسندگان

  • T. Saranya
  • Dr. K. Maheswari
چکیده

Data mining is the process of finding the previously unknown and potentially interesting patterns and relation in database. Data mining is the step in the knowledge discovery in database process (KDD) .The structures that are the outcome of the data mining process must meet certain condition so that these can be considered as knowledge. These conditions are validity, understandability, utility, novelty, interestingness. Researcher identifies two fundamental goals of data mining: prediction and description. The proposed research work suggests the semi-supervised clustering problem where to know (with varying degree of certainty) that some sample pairs are (or are not) in the same class. A probabilistic model for semi-supervised clustering based on Shared Semi-supervised Neighbor clustering (SSNC) that provides a principled framework for incorporating supervision into prototype-based clustering. Semi-supervised clustering that combines the constraint-based and fitness-based approaches in a unified model. The proposed method first divides the Constraintsensitive assignment of instances to clusters, where points are assigned to clusters so that the overall distortion of the points from the cluster centroids is minimized, while a minimum number of must-link and cannot-link constraints are violated. Experimental results across UCL Machine learning semi-supervised dataset results show that the proposed method has higher F-Measures than many existing Semi-Supervised Clustering methods. Keywords-k-means clustering;neighbourhood; dataset;centroids __________________________________________________*****_________________________________________________

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

On the Comparison of Semi-Supervised Hierarchical Clustering Algorithms in Text Mining Tasks

Semi-supervised clustering approaches have emerged as an option for enhancing clustering results. These algorithms use external information to guide the clustering process. In particular, semi-supervised hierarchical clustering approaches have been explored in many fields in the last years. These algorithms provide efficient and personalized hierarchical overviews of datasets. To the best of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015